quantlib.constant package

Submodules

quantlib.constant.enum module

class quantlib.constant.enum.LineMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

RESISTANCE = 0
SUPPORT = 1
class quantlib.constant.enum.OptimalSlopeMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

Selection method for picking the optimal Resistance/Support curve

Alt = 'Alt'
Maj = 'Maj'
class quantlib.constant.enum.RSSPSelectionMethod(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

Selection method for picking the optimal Resistance/Support curve

MAX_DISTANCE = 'Max Distance'
SMOOTH = 'Smooth'
class quantlib.constant.enum.TimeInterval(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

FIFTEEN_MINUTE = 900
FIVE_MINUTE = 300
FOUR_HOUR = 18000
ONE_DAY = 86400
ONE_HOUR = 3600
THIRTY_MINUTE = 1800
static dict() dict[Type[TimeInterval], int]

Turn this Enum into a dict

static infer_from_time_diff(diff_in_seconds: int, atol: float = 0) Type[TimeInterval]

refer to https://numpy.org/doc/stable/reference/generated/numpy.isclose.html about atol :param diff_in_seconds: :param atol: absolute tolerance :return: TimeInterval

static infer_from_timestamps(timestamp1: datetime, timestamp2: datetime)

quantlib.constant.path module

Module contents